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Subspace Identification of Hammerstein Systems
Using Least Squares Support Vector Machines

Ivan Goethals, Kristiaan Pelckmans, Johan A. K. Suykens, and Bart De Moor

Abstract—This paper presents a method for the identification
of multiple-input–multiple-output (MIMO) Hammerstein systems
for the goal of prediction. The method extends the numerical al-
gorithms for subspace state space system identification (N4SID),
mainly by rewriting the oblique projection in the N4SID algorithm
as a set of componentwise least squares support vector machines
(LS-SVMs) regression problems. The linear model and static non-
linearities follow from a low-rank approximation of a matrix ob-
tained from this regression problem.

Index Terms—Hammerstein models, least squares support
vector machines, subspace identification.

I. INTRODUCTION

THROUGHOUT the last few decades, the field of linear
modeling has been explored to the level that most linear

identification problems can be solved efficiently with fairly stan-
dard and well known tools. Extensions to nonlinear systems are
often desirable but in general much harder from a practical as
well as a theoretical perspective. In many situations, Hammer-
stein systems are seen to provide a good tradeoff between the
complexity of general nonlinear systems and interpretability of
linear dynamical systems (see, e.g., [1]). They have been used
e.g., for modeling biological processes [13], [32], chemical pro-
cesses [7], and in signal processing applications [21]. Hammer-
stein models have also been shown to be useful for control prob-
lems (as, e.g., in [14]).

Identification of Hammerstein systems has been explored
from different perspectives. Published approaches mainly differ
in the way the static nonlinearity is represented and in the
type of optimization problem that is finally obtained. Known
approaches include the expansion of the nonlinearity as a sum
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of (orthogonal or nonorthogonal) basis functions [16], [17],
[15], the use of a finite number of cubic spline functions as
presented in [6], piecewise linear functions [28] and neural
networks [12]. Regardless of the parameterization scheme that
is chosen, the final cost function will involve cross-products
between parameters describing the static nonlinearity and those
describing the linear dynamical system. Employing a max-
imum likelihood criterion results in a nonconvex optimization
problem where global convergence is not guaranteed [20].
Hence, in order to find a good optimum for these techniques, a
proper initialization is often necessary [5].

Different approaches were proposed in the literature to over-
come this difficulty. These result in convex methods which gen-
erate models of the same, or almost the same quality as their
nonconvex counterparts. Unfortunately, convexity is either ob-
tained by placing heavy restrictions on the input sequence (e.g.,
whiteness) and the nonlinearity under consideration [2] or by
using a technique known as overparameterization [3], [1]. In
the latter, one replaces every cross-product of unknowns by new
independent parameters resulting in a convex but overparame-
terized method. In a second stage the obtained solution is pro-
jected onto the Hammerstein model class using a singular value
decomposition. A classical problem with the overparameteriza-
tion approach is the increased variance of the estimates due to
the increased number of unknowns in the first stage.

In [8] and [9], it was seen that by combining ideas from the
overparameterization approach with concepts of least squares
support vector machines (LS-SVMs), a Hammerstein autore-
gressive with exogeneous inputs (ARX) identification algorithm
was obtained which outperforms existing overparameterization
approaches, mostly due to the effect of regularization. LS-SVMs
[24], [23] are reformulations to the standard support vector ma-
chines (SVM). SVMs [29], [11], [19] and related methods con-
stitute a powerful methodology for solving problems in linear
and nonlinear classification, function approximation and den-
sity estimation and also stimulated new results in kernel based
methods in general. They have been introduced on the interplay
between learning theory, statistics, machine learning, neural net-
works and optimization theory.

A drawback with the method introduced in [8] is that the ARX
model class is a rather restricted model class and is for instance
not suitable to describe systems involving output noise. To this
extent, identification algorithms based on state-space models are
in many cases preferable. In this paper, we study the extension of
the linear N4SID subspace identification algorithm to Hammer-
stein systems. It will be shown that by using the concept of com-
ponentwise LS-SVM regression, the state reconstruction step
in classical identification algorithms can readily be extended to
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Hammerstein systems. The linear system and static nonlinearity
are recovered in a second step.

The outline of this paper is as follows. In Section II,
the N4SID subspace algorithm for linear systems is re-
viewed briefly. Section III extends the N4SID algorithm
toward a nonlinear setting using a variation on the theme of
LS-SVMs. Section IV presents some illustrative examples for
single-input–single-output (SISO) and multiple-input–mul-
tiple-output (MIMO) systems and relates the presented
algorithm to existing approaches. A brief introduction into
LS-SVM regression and component-wise LS-SVM regression
is provided in Appendices I and II.

As a general rule in this paper, lowercase symbols will be
used to denote column vectors. Uppercase symbols are used for
matrices. Elements of matrices and vectors are selected using
Matlab standards, e.g., denotes the th entry of a matrix

, and symbolizes the th column of the same matrix.
Estimates for a parameter will be denoted by . The symbol

is used for definitions.

II. N4SID ALGORITHM FOR LINEAR SUBSPACE IDENTIFICATION

The subspace algorithm considered in this paper is the
so-called N4SID algorithm, which is part of the set of com-
bined deterministic-stochastic subspace algorithms as presented
in [26] and [27]. We consider systems of the form

(1)

with and the input and output at time
the state, and and zero mean white Gaussian

noise vector sequences with covariance matrix

Given observed sequences , N4SID identification
algorithms are concerned with finding an estimate for the
model order of the system (1), estimates for the matrices

up to a
similarity transformation, and the noise covariance matrices

, and .
Block Hankel matrices play an important role in these algo-

rithms. The input block Hankel matrices are defined as

...
...

...
...

...
...

...
...

with and user defined indexes such that . The
output block Hankel matrices
and are defined in a similar way. Finally

are introduced as the past input–output block Hankel matrices
and

...

as the so-called extended observability matrix of order .
Defining as the oblique projection of the row space
of a matrix into the row space of a matrix along the row
space of a matrix whereby

the main reasoning behind N4SID subspace algorithms follows
from the fact that under the assumptions that

1) the process noise and measurement noise are un-
correlated with the input ;

2) the input is persistently exciting of order , i.e., the
input block Hankel matrix is of full rank;

3) the sample size goes to infinity: ;
4) the process noise and the measurement noise are not

identically zero.
The following relation holds:

with the so-called oblique projection of the future
outputs onto the past data along the future inputs ,
which can be written explicitly as [27]

where can be shown to correspond to an estimate for the
state in (1), resulting from a bank of nonsteady state Kalman
filters [26]. Hence, the order of the system and a realization of
the state can be obtained from a singular value decomposition
of the oblique projection. Once the state is known, extraction
of and is straightforward. Without going into further
theoretical details of the N4SID algorithm (interested readers
are referred to [25]–[27]), we summarize here a practical N4SID
algorithm that will be used toward the Hammerstein model ex-
tension.

1) Calculate the oblique projections of the future outputs
along the future inputs onto the past:

(2)
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where and . This pro-
jection can be implemented using a least squares algo-
rithm as follows:

Estimates for and are then obtained as fol-
lows:

2) Calculate the SVD of the oblique projection , deter-
mine the order by inspecting the singular values and
partition the SVD accordingly to obtain and

3) Determine the extended observability matrices and
from

(3)

4) Determine estimates for the state sequences from the
equations

5) Extract estimates for and from

by minimizing the least-squares residuals and .
6) Determine estimates for and from

The extension of this approach toward the identification of a
Hammerstein system mainly concentrates on steps 1) and 5)
where one uses the technique of componentwise LS-SVMs [18]
instead.

III. EXTENDING THE N4SID ALGORITHM TOWARDS

IDENTIFICATION OF HAMMERSTEIN MODELS

In this section, the linear N4SID algorithm will be extended
to the identification of Hammerstein systems making use of
the concept of overparameterization in an LS-SVM framework.

Equation (1) is transformed into a Hammerstein system by in-
troducing a static nonlinearity which is applied
to the inputs

(4)

Inputs and outputs , are assumed to be available.
The sequences of process and measurement noise and

follow the same statistics as outlined in Section II. We
define the matrix operator as an operator on a block Hankel
matrix and a nonlinear function on which applies to
every block matrix in and stacks the results in the original
Hankel configuration

...
...

...

...
...

...

A. Overparameterization for the Oblique Projection

The oblique projection can be calculated
from estimates for and obtained by minimizing the
residuals of the following equation [27]:

(5)

in a least-squares sense. This can be rewritten as

(6)

for and . Once estimates for
and occuring in (5) and (6) are obtained, the oblique projection
is calculated as

(7)

for and . Note that in (6) and (7), prod-
ucts between parameter matrices and and the static non-
linearity appear which are hard to incorporate in an optimiza-
tion problem. In order to deal with the resulting nonconvexity,
we apply the concept of overparameterization (see Appendix II)
by introducing a set of functions such that [1]

(8)
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for and . With these new functions
we obtain a generalization to (6) and (7)

(9)

(10)

for and . Note that (9) is now linear
in the functions . The central idea behind the
algorithm presented in this paper is that and estimates for the
functions in (9)–(10) can be determined from data using the
concept of componentwise LS-SVM regression as presented in
Appendix II.

Let the kernel function be defined as such
that for all
and the kernel matrix such that

for all . Substi-
tuting for the primal model (see Appendix II) in (9)
results in

(11)

As argued in Appendix II, the expansion of a nonlinear function
as the sum of a set of nonlinear functions is not unique, e.g.,

for all . It was seen that this problem can be avoided by
including centering constraints of the form

(12)

This constraint can always be applied since for any constant ,
and any function such that there
exists a state transformation with
and a constant such that (4) is transformed as follows:

(13)

with and defined as

Hence, the constraint (12) can be applied provided that a new
parameter is added to the model, transforming (11) into

where denotes the matrix kronecker product. Through the
equality for all

, the constraint (12) amounts to

The LS-SVM primal problem is then formulated as a con-
strained optimization problem

(14)

Lemma 3.1: Given the primal problem (14), estimates for
and follow from the dual system:

where is a column vector
of length with elements 1,

and

...
...

...

...
...

...

...
...

...

The matrices and have elements
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for all . Estimates for the in (9) are given as:

(15)

Proof: This directly follows from the Lagrangian:

with by taking the conditions for optimality

and after elimination of the primal variables
and .

Combining the results from Lemma (3.1) with (10), we have

...

(16)

with and .

B. Calculating the Oblique Projection

The calculation of is entirely equivalent to that of .
Without further proof, we state that is obtained as

(17)

with for all
, and

and follow from:

with and

C. Obtaining Estimates for the States

The state sequences and can now be determined
from and in line with what is done in the linear case
discussed in Section II. These state sequences will be used in a
second step of the algorithm to obtain estimates for the system
matrices and the nonlinearity . Note that in the linear case, it
is well known that the obtained state sequences and
can be considered as the result of a bank of nonsteady-state
Kalman filters working in parallel on the columns of the block-
Hankel matrix [27]. In the Hammerstein case, and if were
known, this relation would still hold provided that is re-
placed by . However, an estimate for based
on a finite amount of data will in general be subject to ap-
proximation errors [29]. As the classical results for the bank
of linear Kalman filters are not applicable if the inputs
to the linear model are not exact the obtained states and

can no longer be seen as the result of a bank of Kalman
filters working on . Despite the loss of this
property, it will be illustrated in the examples that the proposed
method outperforms existing Hammerstein approaches such as
approaches based on nonlinear autoregressive with exogeneous
inputs (NARX) models and N4SID identification algorithms
with an expansion in Hermite polynomials.

D. Extraction of the System Matrices and the Static
Nonlinearity

The linear model and static nonlinearity are estimated from

(18)

It will be shown in this subsection that this least-squares
problem can again be written as an LS-SVM regression
problem. Denoting

(19)

and replacing by , where again an expansion
of a product of scalars and nonlinear functions is written as a
linear combination of nonlinear functions, we have

...
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with the residuals of (18). The resulting LS-SVM primal
problem can be written as

where denotes a regularization constant which can be dif-
ferent from the used in Subsection III-A.

Lemma 3.2: Estimates for and in are obtained
from the following dual problem:

(20)

whereby for all
for all

,
and

...
...

...
...

Proof: This follows directly from the Lagrangian:

by taking the conditions for optimality

, and after elimination of the primal vari-
ables and .

By combining the results from Lemma 3.2 with (18) and (19),
we have

(21)

Hence, estimates for in and the nonlinearity can
be obtained from a rank approximation of the right hand
side of (21), for instance using a singular value decomposition.
This is a typical step in overparameterization approaches [1]
and amounts to projecting the results for the overparameterized
model as used in the estimation onto the class of Hammerstein
models.

E. Practical Implementation

Following the discussion in the previous sections, the final
algorithm for Hammerstein N4SID subspace identification can
be summarized as follows.

1) Find estimates for the oblique projections and
from (16) and (17).

2) Find estimates for the state following the procedure
outlined in Subsection III-C.

3) Obtain estimates for and following
the procedure outlined in Subsection III-D.

4) Obtain estimates for en from a rank-m approx-
imation of (21).

It should be noted at this point that given the fact that regular-
ization is inherently present in the proposed identification tech-
nique, lack of persistency of excitation will not lead to any nu-
merical problems. However, in order to ensure that all aspects
of the linear system are properly identified, persistency of exci-
tation of of at least order is desired (see also Section II).
Persistency of excitation of can for some nonlinear func-
tions be expressed as a condition on the original inputs but
the relation is certainly not always straightforward (see for in-
stance [30] for a discussion on this issue).

Furthermore, it is important to remark that the estimate of
the static nonlinearity will only be reliable in regions where the
input density is sufficiently high.

IV. ILLUSTRATIVE EXAMPLES

In this section, the presented algorithm is compared to the
Hammerstein ARX approach presented in [8] and classical sub-
space Hammerstein identification algorithms involving overpa-
rameterization in orthogonal basis functions. Two properties of
the Hammerstein N4SID subspace approach will thereby be
highlighted.

• The greater flexibility that comes with the use of state-
space models over more classical Hammerstein ARX
approaches.

• The superior performance of the introduced algorithm
over existing overparameterization approaches for
Hammerstein subspace identification.

A. Comparison Between Hammerstein N4SID and
Hammerstein ARX

Consider the following system which belongs to the Ham-
merstein class of models:

(22)

with and polynomials in the forward shift operator where

. Let such that
be the static nonlinearity. A dataset was generated

from this system where is a white Gaussian noise
sequence for with and is
a sequence of Gaussian white noise with a level of 10% of the
level of the nonlinearity .



GOETHALS et al.: SUBSPACE IDENTIFICATION OF HAMMERSTEIN SYSTEMS 1515

Fig. 1. True transfer function (solid) and estimated ones (dashed) for the LS-SVM N4SID subspace algorithm (top left) and the LS-SVM ARX algorithm (top
right), as estimated from a sequence of 1000 input/output measurements on a simulated system, with the addition of 10% output noise. The true nonlinearities
(solid) and estimated ones (dashed) are displayed below the transfer functions, for the N4SID case (lower left), and the ARX-case (lower right).

The measurement noise terms were chosen to be zero mean
Gaussian white noise such that a signal to noise ratio of 10 was
obtained at the output signal. The Hammerstein N4SID sub-
space identification algorithm as derived in Section III was used
to extract the linear model and the static nonlinearity from
the dataset described above. The number of block-rows in the
Block Hankel matrices was set to 10 which is a common choice
in subspace identification algorithms [27]. An advantage of the
N4SID algorithm is that the model order, 6 in this case, follows
automatically from the spectrum of the SVD. The hyper-pa-
rameters in the LS-SVM N4SID algorithm were selected as

by validation on an indepen-
dent validation set. The resulting linear system and static non-
linearity are displayed in Fig. 1.

As a comparison, the results of the LS-SVM ARX estimator
[8] are also displayed in Fig. 1. For the ARX-estimator, the
number of poles and zeros were assumed to be fixed a priori.
Two hyper-parameters (the regularization constant and the
bandwidth of the RBF kernel) which need to be set in this

method were chosen in accordance with the choices reported
in [8]. Note that although the Hammerstein ARX method
performed very well for this example in the absense of output
noise (see the examples in [8]), its performance deteriorates
in the presence of output noise as evidenced by the poor fit in
Fig. 1.

This highlights one of the main advantages of the use of sub-
space identification methods [27] over more classical ARX pro-
cedures, namely that they allow for the successful estimation of
a much wider class of linear systems. Note on the other hand
that if the true system fits well into the more restricted ARX
framework, use of the latter is to be prefered [8].

B. Comparison With Classical Subspace Overparameterization
Approaches

As mentioned before, a classical approach to Hammerstein
system identification is to expand the static nonlinearity in a set
of orthogonal or nonorthogonal basis-functions [17]. The same
idea can be applied to subspace algorithms [15]. Once a set
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Fig. 2. True transfer function (solid) and the estimated one (dashed) for the Hermite N4SID subspace algorithm as estimated from a sequence of 1000 input/output
measurements on a simulated system, with the addition of 10% output noise.

of basis-functions is considered, the one-dimensional input is
transformed into a higher-dimensional input vector which con-
tains the coefficients of the expansion of in its basis. The
classical N4SID subspace algorithm as outlined in Section II
is thereafter applied. The linear system and static nonlinearities
can be obtained from the obtained matrices and (see [15]
for a detailed procedure).

This example will adopt the common choice of the Hermite
polynomials as a basis. The best results on the dataset with
output noise were obtained when selecting seven Hermite
polynomials with orders ranging from 0 to 6. The obtained
linear system corresponding to this choice of basis functions is
displayed in Fig. 2. Note the rather poor performance of this
method, compared to the LS-SVM N4SID algorithm. This can
largely be attributed to the fact that the performance of subspace
algorithms degrades as the number of inputs increases, certainly
if these inputs are highly correlated [4]. This as a result of a
bad conditioning of the matrices and as the number
of rows increases and these rows get more correlated. For the
zero-order Hermite polynomial (which is a constant) this is
certainly the case but also when leaving out this polynomial,
condition numbers of and higher are encountered. This
problem does not occur in the N4SID LS-SVM algorithm as
the latter features an inherently available regularization frame-
work. An additional advantage is the flexibility one gets by
plugging in an appropriate kernel and the fact that if localized
kernels are used, no specific choices have to be made for their
locations. The locations follow directly from the formulation
of costfunctions as (14).

V. CONCLUSION

In this paper, a method for the identification of Hammer-
stein systems was presented based on the well-known N4SID

subspace identification algorithm. The basic framework of the
N4SID algorithm is largely left untouched, except for the or-
dinary least squares steps which are replaced by a set of com-
ponentwise LS-SVM regressions. The proposed algorithm was
observed to be able to extract the linear system and the static
nonlinearity from data, even in the presence of output noise.

APPENDIX I
LS-SVM FUNCTION ESTIMATION

Let be a set of independently and
identically distributed (i.i.d.) input/output training data with
input samples and output samples . Consider the static re-
gression model where where is an
unknown real-valued smooth function and are i.i.d. (un-
correlated) random errors with .
Originating from the research on classification algorithms,
Support Vector Machines (SVM’s) and other kernel methods
have been used for the purpose of estimating the nonlinear .
The following model is assumed:

where denotes a potentially infinite
dimensional feature map which doesn’t have be known ex-

plicitly. In the following paragraph we will see how the fea-
ture map can be induced in an implicit way by the adoption of
a proper kernel function. The regularized cost function of the
LS-SVM is given as
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The relative importance between the smoothness of the
solution and the data fitting is governed by the scalar

referred to as the regularization constant. The
optimization performed corresponds to ridge regres-
sion (see, e.g., [10]) in feature space. In order to solve
the constrained optimization problem, the Lagrangian

is constructed, with the Lagrange multipliers. After
application of the conditions for optimality:

, the
following set of linear equations is obtained:

(23)

where

, with a positive–definite Mercer kernel func-
tion. Note that in order to solve the set of (23), the feature
map does never have to be defined explicitly. Only its
inner product, a positive definite kernel, is needed. This
is called the kernel trick [29], [19]. For the choice of the
kernel , see, e.g., [19]. Typical examples are the use
of a linear kernel , a polynomial kernel

of degree or the RBF kernel
where denotes the

bandwidth of the kernel. The resulting LS-SVM model can be
evaluated at a new point as

where is the solution to (23).
LS-SVMs are reformulations to the original SVM’s em-

ployed for tasks in classification [24], regression [23] and
provides primal-dual optimization formulations to the algo-
rithm of kernel principal component analysis (KPCA), kernel
partial least squares (KPLS), kernel canonical correlation
analysis (KCCA), and others [23]. By the use of the least
squares criterion and the use of equality instead of inequality
constraints, the estimation typically boils down to the solution
of a set of linear equations or eigenvalue problems instead of the
optimization of quadratic programming problems [22]–[24].
In [8], the task of identifying a Hammerstein model using
an LS-SVM based approach of the nonlinearity and an ARX
system was considered.

APPENDIX II
HAMMERSTEIN FIR MODELS USING LS-SVMS

The extension of LS-SVMs toward the estimation of additive
models was studied in [18]. It was applied toward the identifica-
tion of Hammerstein ARX models in [8]. We review briefly the
basic steps as they will reoccur in the presented technique. Let

be a (SISO) sequence of observations.
Consider a Hammerstein FIR model of order .

(24)

for all where
is a vector. Whenever both as well as are unknown, the
simultaneous estimation of those parameters is known to be a
hard problem. Following [1], an overparameterization technique
can be adopted. Consider in the first stage the identification of
the parameters and of the slightly broader model

(25)

for all where and for all
. A necessary and sufficient condition for the

restriction of (25) to the Hammerstein class (24) can be written
as the rank constraint

(26)

It becomes clear that the right hand side occuring in the term
(25) has a nonunique representation as one can always add (and
substract) a row-vector to the nonlinear function

such that
and . This follows from the following relation:

However, this operation does not preserve the constraint (26)
if . As a bias term can be found such that

and , the nonlinear functions
can be centered around zero without loss of generality. Then a
necessary linear condition for (26) becomes

(27)

or using the empirical counterpart

(28)

which are referred to as the centering constraint.
The overparameterization procedure amounts to first ob-

taining estimates of the model class (25) subject to the centering
constraints (28) and afterwards projecting the result onto the
Hammerstein class by calculating a rank one approximation of
the estimate using an SVD. The primal-dual derivation can be
summarized as follows [8].

Lemma 2.1: Consider the primal estimation problem

(29)

Let be a positive–definite matrix defined as
for all and

. Let be the kernel matrix
and let such that for
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all . The solution is uniquely characterized by
the following dual problem:

(30)

where and denote the
Lagrange multipliers to the constraints in (29). The estimate can
be evaluated in a new datapoint as

and where and are the
solution to (30).
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